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A good choice of model formulation and model parameters is one of the most important and difficult aspects
in mesoscale modeling and requires a systematic and quantitative analysis. In this paper, it is studied how the
model parameters of a generalized phase field model affect the landscape of the free-energy density functional,
the phase field profiles at the grain boundaries, and the corresponding trajectory along the free-energy land-
scape. The analysis results in quantitative relations between the model parameters, on one hand, and grain
boundary energy and mobility, on the other hand. Based on these findings, a procedure is derived that generates
a suitable set of model parameters that reproduces accurately a material’s grain boundary energy and mobility
for arbitrary misorientation and inclination dependence. The misorientation and inclination dependence are
formulated so that the diffuse interface width is constant, resulting in uniform stability and accuracy conditions
for the numerical solution. The proposed model formulation and parameter choice allow us to perform quan-
titative simulations with excellent controllability of the numerical accuracy and therefore of the material
behavior.
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I. INTRODUCTION

Simulation techniques that describe microstructural evo-
lution on a mesoscale, such as the phase field method, are
very important in grain growth studies. When grain boundary
energy and mobility are known from experiments,1 atomistic
simulations,2–4 or theory,5 mesoscale simulations allow to
predict the evolution of the grain size and grain orientation
distributions of a given grain structure. They have been ex-
tremely valuable in the validation of mean-field theories, for
instance, for ideal grain growth6–9 and grain growth in the
presence of second-phase particles.10–15 Currently, much at-
tention is also given to the evolution of structures in which
grain boundary energy and mobility depend on the misorien-
tation between neighboring grains and the grain boundary
inclination.2,16,17 Mesoscale simulations allow us to distin-
guish between the effects caused by anisotropy in grain
boundary energy and those caused by anisotropy in grain
boundary mobility.18,19 The misorientation dependence of
grain boundary properties could also play an important role
in the nucleation of abnormal grain growth and
recrystallization.20,21 It is, however, still a great challenge to
derive reliable conclusions from mesoscale grain growth
simulations.

One of the difficulties in mesoscale modeling is that ma-
terial properties that follow from processes and interactions
on the atomistic scale must be introduced into the model in a
phenomenological way. In mesoscale models, the properties
of a system are usually described by parameterized expres-
sions and the evolution equations are derived based on ther-
modynamic principles. The phenomenological parameters
are related to material properties relevant for the considered
process, such as grain boundary energy and mobility in the
case of grain growth. Ideally, the phenomenological descrip-
tion captures the important physics and is free from non-
physical side effects. It is also a good modeling approach to

reduce the number of model parameters as much as possible.
Still, the choice of the phenomenological expressions and
model parameters is somehow arbitrary. There may be dif-
ferent mesoscale descriptions for the same physical pro-
cesses and phenomena. Furthermore, material properties,
such as grain boundary energy and mobility, are not always
explicit parameters in the phenomenological model; they can
be a complicated function of the model parameters. Some-
times, a number of model parameters are also added for nu-
merical or other practical reasons.

The phase field method is a very general technique for
modeling complex morphological processes on a mesoscale,
such as solidification, precipitation, and grain growth.22–24 In
phase field models, microstructures are represented by order
parameter or phase fields that are continuous functions of the
spatial coordinates and time. Grain boundaries are implicitly
given by narrow regions where the phase fields change
smoothly between their values in the neighboring grains. The
grain boundary energy is given by an integral of the local
free-energy density across this diffuse grain boundary
region,25 which is, however, mostly too complicated to work
out analytically, especially when more than one phase field
variable must be considered.26,27 Moreover, due to limita-
tions in computational power, one is usually forced to take
the diffuse interface regions in the simulations wider than the
physical grain boundary width, in order to perform simula-
tions for relevant length and time scales. The diffuse inter-
face width is then treated as a numerical parameter that de-
termines the accuracy of the simulation results. To account
quantitatively for the effect of heat and mass diffusion on
solidification and phase transformations, alternative phase
field models, often referred to as “thin-interface” models,
have been proposed28–33 that allow us to adjust the diffuse
interface width for numerical convenience without affecting
the physical grain boundary properties. With respect to sys-
tems with nonuniform grain boundary properties, Kazaryan
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et al.34 and Ma et al.35 pointed out that it is important that the
model formulation has enough degrees of freedom to vary
the grain boundary properties while the diffuse interface
width is kept constant.In this way the movement of all grain
boundary segments is described with equal accuracy in nu-
merical simulations. Their methodology to determine the
model parameters is, however, only approximate36 or only
applicable to two-grain or two-phase structures. Since a large
number of phase field variables and model parameters have
to be considered for multigrain structures with nonuniform
grain boundary properties, it is not straightforward to formu-
late an appropriate free-energy functional and choose a good
set of model parameters that reproduce accurately the desired
grain boundary properties. A systematic insight into the ef-
fect of each model parameter and the shape of the free-
energy functional on the grain boundary properties and the
diffuse interface width is consequently required. Further-
more, if the role of each model parameter is understood, it
becomes possible to derive indirectly difficult-to-measure
material properties, such as grain boundary energy and mo-
bility by comparing mesoscale simulation images with ex-
perimental microscope images.

Recently, we introduced an improved phase field formu-
lation for grain growth that is able to account accurately for
arbitrary misorientation and inclination dependence of the
grain boundary properties.36 In this paper, we derive quanti-
tative relations between the model parameters and the grain
boundary properties for this generalized phase field model.
The analysis results in a procedure for calculating an appro-
priate set of model parameters that reproduces given grain
boundary energies and mobilities as a function of misorien-
tation and grain boundary inclination, and guarantees a con-
stant diffuse interface width. The structure of the paper is as
follows: First, we study the effect of the model parameters
on the shape of the free-energy landscape and the phase field
profiles at an interface in local equilibrium for a two-grain
structure and systems with uniform grain boundary proper-
ties in Sec. II. This analysis results in quantitative relations
for the grain boundary energy, mobility, and width as a func-
tion of the model parameters. In Sec. III, the model descrip-
tion and the parameter relations are generalized to multigrain
systems with arbitrary inclination and misorientation depen-
dence of the grain boundary energy and mobility. An itera-
tive algorithm is described for calculating the appropriate
model parameter values for a given set of discrete grain
boundary energies and mobilities �for example, for discrete
misorientations� and a constant diffuse grain boundary width.
Furthermore, inclination-dependent functions are formulated
for the model parameters, which reproduce the inclination
dependence of a material’s grain boundary energy and mo-
bility and guarantee a constant diffuse grain boundary width
for arbitrarily strong anisotropy. Conclusions and further di-
rections are formulated in Sec. IV. Applications of the model
are described elsewhere.36,37

II. INDIVIDUAL GRAIN BOUNDARIES WITH UNIFORM
PROPERTIES

A. Model formulation for systems with uniform grain
boundary properties

The considered phase field model36 is based on the phase
field formulation from Fan and Chen,26 Chen and Yang,38

and Chen39 for normal grain growth and that of Kazaryan
et al.34,40 for grain growth in anisotropic systems. Some
modifications were made to the original formulations, which
are essential for a fully quantitative approach or simplify the
model formulation and model parameter choice.36 In this
type of phase field models for grain growth, different grain
orientations are represented by a large set of nonconserved
field variables

�1�r,t�,�2�r,t�,�3�r,t�, . . . ,�i�r,t�, . . . �p�r,t� .

We propose a free-energy functional F of the form

F = �
V

f��1, . . . ,�p,��1, . . . ,��p�dV

= �
V
�mf0��1,�2, . . . ,�p� +

�

2 �
i=1

p

���i�2�dV , �1�

which is a functional of the phase field variables and their
gradients. It is assumed that the molar volume is constant
and the system is in thermal equilibrium. The energy gradi-
ent coefficient � is strictly positive, so that gradients of the
phase field variables give rise to a positive contribution to
the free energy of the system. We propose a homogeneous
free energy of the form mf0 with

f0��1,�2, . . . ,�p� = �
i=1

p ��i
4

4
−

�i
2

2
� + ��

i=1

p

�
j�i

p

�i
2� j

2 +
1

4
.

�2�

It has multiple degenerate minima located at

��1,�2, . . . ,�p� = ��1,0, . . . ,0�,�0, � 1,0, . . . ,0�, . . . ,

�0, . . . ,0, � 1� .

where f0= f0,min=0 for the different grain orientations. This
formulation is slightly different from the original.38 The
number of parameters is reduced by 1 without loss of gener-
ality and one of the model parameters �m� is placed in front
of the homogeneous free energy, which will result in simpler
expressions for the grain boundary properties as a function of
the model parameters. Furthermore, a constant term m /4 is
added so that the homogeneous free energy equals zero
within grains. In this way, integral �1� equals the total grain
boundary energy present in a system. The evolution of the
phase field variables is given by the time-dependent
Ginzburg–Landau equations,

��i�r,t�
�t

= − L
�F��1,�2, . . . ,�p�

��i�r,t�

= − L� � f��1,�2, . . . ,�p�
��i

− ��2�i� , �3�

with i=1, . . . , p and L is a positive kinetic parameter. Ac-
cording to thermodynamic laws, these equations guarantee a
continuous decrease in the total grain boundary energy of the
system. For systems with uniform grain boundary properties,
the model parameters m, �, �, and L are constants. In this
section, the phase field profiles across a diffuse grain bound-
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ary region and the grain boundary properties are calculated
as a function of these model parameters.

B. Equations for a flat interface in equilibrium

To derive equations for the phase field profiles and grain
boundary energy of a flat interface in local equilibrium, the
two-grain structure shown in Fig. 1�a� with grain orientations
i and j and a flat interface at x=0 is considered. The grain
boundary properties are characterized by parameters m, �i,j,
and �i,j �where the parameter nomenclature for nonuniform
systems is already applied, in which �i,j and �i,j may have
different values for different grain boundaries�. Following
the approach of Cahn and Hilliard25 and using free-energy
functionals given by �1� and �2�, the specific grain boundary
energy of the system in Fig. 1�a� is given by the integral

�i,j = �
−	

+	 	mf0��i,� j� +
�i,j

2
��d�i

dx
�2

+ �d� j

dx
�2�
dx ,

�4�

where x is the coordinate perpendicular to the grain bound-
ary. For a grain boundary in local equilibrium, the profiles
�i�x� and � j�x� adopt a shape that minimizes functional �4�
and satisfies the boundary conditions

�i = 1 and � j = 0 for x → − 	 , �5a�

�i = 0 and � j = 1 for x → + 	 , �5b�

d�i

dx
=

d� j

dx
= 0 for x → � 	 . �5c�

According to the principles of variational calculus,41,42 the
functions �i�x� and � j�x� that extremize functional �4� satisfy

m
� f0

��i
− �i,j�d2�i

dx2 � = 0, �6a�

m
� f0

�� j
− �i,j�d2� j

dx2 � = 0, �6b�

or, equivalently, the integrated equation

mf0 −
�i,j

2
��d�i

dx
�2

+ �d� j

dx
�2� = ct = 0, �7�

for �i,j, �i,j, and m constants. Evaluation of the left-hand side
of Eq. �7� at �	 and considering boundary conditions
�5a�–�5c� gives ct=0. Rearrangement of Eq. �7� then yields

d�i

dx
= −� 2mf0

�i,j�1 + � d� j

d�i
�2


, �8a�

and

d� j

dx
=� 2mf0

�i,j�1 + � d�i

d� j
�2


, �8b�

where boundary conditions �5a�–�5c� are taken into consid-
eration. Combination of Eqs. �4� and �7� gives

�i,j = 2m�
−	

+	

f0��i,� j�dx , �9�

and after changing the independent variable from x to �i
using Eq. �8a�,

�i,j = 2m�
0

1

f0��i,� j��i��
dx

d�i
d�i

= �2m�i,j�
0

1

�f0��i,� j��i���1 + �d� j��i�
d�i

�2

d�i,

�10�

where � j��i� is the relation between the local values of �i
and � j along the interfacial profiles across a grain boundary
in local equilibrium. It is clear from relation �10� that the
grain boundary energy is proportional to the square root of
�i,j and m. The remaining integral, however, is in general too
complicated to be solved analytically. If Eqs. �6a� and �6b�
are combined and the partial derivatives of f0 are worked
out, it follows that
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FIG. 1. �a� Phase field representation by means of two phase
field variables �i and � j of a flat grain boundary between two grains
with orientations i and j. �gb is a measure for the width of the
diffuse grain boundary region where the phase field variables
change between their values in the neighboring grains. �b� Curved
grain boundary surface with mean curvatures 1 /R1 and 1 /R2 and
profiles of the phase field variables along the normal to the grain
boundary surface, for a grain with orientation i embedded in a grain
with orientation j. A curvilinear coordinate system �r , t1 , t2� is in-
dicated, with r normal to the surface and pointing outward and t1

and t2 tangential to the surface. The angles 
1 and 
2 are measured
with respect to the r axis in the r-t1 and r-t2 planes, respectively.
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d� d� j

dx �
d� d�i

dx � =
� j

3 − � j + 2�i,j�i
2� j

�i
3 − �i + 2�i,j�i� j

2 �11�

depends only on the model parameter �i,j and, by conse-
quence, d� j /d�i and � j��i� do as well. The relation between
the specific grain boundary energy and the model parameters
can accordingly be written in the form

�i,j = g��i,j���i,jm . �12�

Knowledge of the function g��i,j� and its inverse g−1 would
greatly facilitate the choice of the model parameters for a
given grain boundary energy. Equations �6a� and �6b� for the
phase field profiles are evaluated in Sec. II D and integral
�10� for the grain boundary energy in Sec. II E. First, the
effect of the parameter �i,j on the landscape of the homoge-
neous free energy is examined.

C. Homogeneous free-energy density landscape

For �i,j �0.5, the combinations of phase field variable
values

��i,� j� = �0,0�,��1,0�,�0, � 1� ,

and

��
1

�2�i,j + 1
, �

1
�2�i,j + 1

�
satisfy the conditions

� f0

��i
= �i

3 − �i + 2�i,j�i� j
2 = 0, �13a�

� f0

�� j
= � j

3 − � j + 2�i,j�i
2� j = 0, �13b�

for the extremal and saddle points of f0��i ,� j�. Only positive
values of �i and � j will be considered in the further analysis.
The point �0,0�, where f0=0.25, is a local maximum and the
points �1,0�, �0,1� are degenerate minima, where f0=0. The
point � 1

��2�i,j+1� , 1
��2�i,j+1� � is a saddle point. Substitution of

��i ,� j�= ��saddle ,�saddle�, with

�saddle =
1

�2�i,j + 1
, �14�

into Eq. �2� gives

f0��saddle� =
2�i,j − 1

4�2�i,j + 1�
. �15�

Both the position and height of the saddle point depend on
the model parameter �i,j. Furthermore, it follows from con-
ditions �13a� and �13b� that for �=0.5, there is an infinite
number of minima, namely, all points on the circle �i

2+� j
2

=1, and for �i,j �0.5, the absolute minimum is at
� 1

��2�i,j+1� , 1
��2�i,j+1� � instead of �0,1� and �1,0�. A free energy

with �i,j �0.5 is thus inappropriate for the description of
multigrain structures.

Figure 2 shows contour plots of the homogeneous free-
energy density �Eq. �2�
 as a function of two phase field
variables �i and � j and for different values of �i,j. For �i,j
�0.5, there are clearly localized minima at �1,0� and �0,1�.
The saddle points are indicated with a cross. For all values of
�i,j, the free energy is symmetrical with respect to the diag-
onal �i=� j. It is not symmetrical with respect to the diagonal
�i=1−� j since the contribution of the term �i,j�i

2� j
2 in-

creases with the values of the phase field variables. More-
over, for larger values of �i,j, the contours deviate more to-
ward the corner ��i ,� j�= �0,0� and the saddle point is at
smaller values of the phase field variables. The relation
� j��i� between the values of the phase field variables along
their profiles across a grain boundary in local equilibrium is
indicated using a bold line and will be commented on in Sec.
II D.
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FIG. 2. �Color online� Contour plots of f0��i ,� j� for different
values of the model parameter �i,j. The position of the saddle point
is indicated with a cross. The dotted line along �i=� j makes clear
that the homogeneous free energy is symmetrical with respect to
both order parameters. The bold black lines indicate the paths � j��i�
across a grain boundary in local equilibrium.
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The evolution of f0 along the diagonal �i=� j is plotted
for different �i,j in Fig. 3. For all values of �i,j, there is a
local maximum f0=0.25 at �i=� j =0. There would be a
minimum at �i=� j =1 for �i,j =0. However, for �i,j �0.5, the
contribution �i,j�i

2� j
2, which increases as �1=�2 approaches

1, prevents the minimum at �i=� j =1 and introduces a
saddle point �minimum along the curve for f0��i ,� j�
. The
function values increase and the saddle point shifts toward
smaller values for increasing values of �i,j. For �i,j =1.5, the
saddle point is at �i=� j =0.5.

If more phase field variables are considered, the degener-
ate minima of the homogeneous free energy �Eq. �2�
 are
located at ��i=1, � j�i=0� and there is a local maximum at
�i=0, assuming ��0.5 and i , j=1, . . . , p. Moreover, there
are saddle points at

��i = � j =
1

�1 + �2 − 1��
,�k�i,j = 0�

for all combinations of two phase field variables and

��i = � j = �k =
1

�1 + �3 − 1��
,�l�i,j,k = 0�

for all combinations of three phase field variables, etc., for
higher-order combinations. Because of the term ��i�j�i

2� j
2,

each extra phase field variable with a value different from 0
gives a positive contribution to the local free-energy density.
By consequence, within grains only one of the phase field
variables differs from 0 �it equals 1�; and at grain boundaries
and multijunctions, only those phase field variables repre-
senting the adjacent grains are different from zero.

D. Interfacial profiles

The equilibrium profiles of �i and � j are given by differ-
ential equations �6a� and �6b� in combination with boundary
conditions �5a�–�5c�. In this section, the differential equa-
tions are first solved analytically for symmetrical phase field
profiles; this is the case for �i,j =1.5. Then, numerically cal-
culated profiles are analyzed for the general case.

1. Analytical calculation of symmetrical profiles

In the present study, a “symmetrical profile” refers to a
profile for which ��x�=1−��−x�, assuming that the central

plane of the diffuse grain boundary region is located at x
=0. Since free-energy formulations �1� and �2� are symmetri-
cal with respect to �i and � j, the following relations exist for
symmetrical phase field profiles �i�x� and � j�x� across a
grain boundary in local equilibrium:

� j = 1 − �i, �16a�

d� j

dx
= −

d�i

dx
, �16b�

and

d2� j

dx2 = −
d2�i

dx2 . �16c�

Consequently, for symmetrical profiles the path �i�� j� and its
inverse are known and have a simple form, namely, relation
�16a�. Furthermore, it follows from conditions �16a�–�16c�
that the profiles of the phase field variables cross at
�i=� j =�interf=0.5 and that d�i /d� j =−1 and
d�d�i /dx� /d�d� j /dx�=−1 along the profiles. Application of
condition �16c� to differential equations �6a� and �6b� gives
that the two phase field profiles across a diffuse interface can
only be symmetrical if at every point x along the profile

� f0

�� j
= −

� f0

��i
, �17�

or using Eq. �13a� and �13b� for the partial derivatives of f0
with � j =1−�i,

− �1 + 2�i,j��i
3 + �3 + 2�i,j��i

2 − 2�i = − �1 + 2�i,j��i
3

+ 4�i,j�i
2 − �2�i,j − 1��i. �18�

This requirement can only be satisfied at every point along
the interface for �i,j =1,5.

Since for symmetrical profiles � j��i�=1−�i, it is straight-
forward to eliminate one of the phase field variables from
Eqs. �6a�, �6b�, �8a�, and �8b� for a boundary in local equi-
librium. The functional f0 and its partial derivatives can be
written as

f0��i,1 − �i� = ��i
4

4
−

�i
2

2
� + � �1 − �i�4

4
−

�1 − �i�2

2
�

+ �i,j�i
2�1 − �i�2 +

1

4
= �1

2
+ �i,j��i

2�1 − �i�2,

�19�

and

� f0

��i
��i,1 − �i� = �1 + 2�i,j��i

3 − 4�i,j�i
2 + �2�i,j − 1��i.

�20�

Analogous expressions are obtained for �f0 /��i as a function
of � j and �f0 /�� j as a function of �i or � j. As a result, for
symmetrical profiles, differential equations �6a� and �6b� be-
come
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FIG. 3. Evolution of f0 along the diagonal �i=� j for different
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d2�i

dx2 =
m

�i,j
2�i�2�i

2 − 3�i + 2� , �21a�

d2� j

dx2 =
m

�i,j
2� j�2� j

2 − 3� j + 2� , �21b�

and integrated equations �8a� and �8b�

d�i

dx
= −�2m

�i,j
�i�1 − �i� , �22a�

d� j

dx
=�2m

�i,j
� j�1 − � j� , �22b�

where it is applied that �i,j =1.5 and d�i /d� j =d� j /d�i=−1.
It can be verified that the profiles

�i�x� =
1

2
�1 − tanh�� m

2�i,j
x�� , �23a�

� j�x� =
1

2
�1 + tanh�� m

2�i,j
x�� , �23b�

satisfy Eqs. �21a�, �21b�, �22a�, and �22b� in combination
with boundary conditions �5a�–�5c�.

2. Numerical calculation of arbitrary profiles

It follows from requirement �18� that, in general, the
phase field profiles are not symmetrical except for �i,j =1.5.
For asymmetrical profiles, the ratios �d2�i /dx2� / �d2� j /dx2�
and �d�i /dx� / �d� j /dx� are not constant along the profiles
and the relationship between �i�x� and � j�x� is complex. It
was not possible to identify analytical expressions for the
profiles �i�x� and � j�x�, which satisfy differential equations
�6a� and �6b�. Therefore, numerical simulations were per-
formed to study the effect of the model parameters m, �i,j,
and �i,j on the equilibrium shape of the profiles, using the
one-dimensional two-grain geometry shown in Fig. 1�a�. In
the simulations, the phase field profiles evolved toward their
equilibrium shape, starting from a sharp transition at the
grain boundary. To obtain a well resolved representation of
the profiles, an extremely fine grid was used: the grid spacing
was 0.1 or smaller, so that there were at least 100 grid points
�g.p.� between the positions x=−5 and x=5 �see Figs. 4 and
7�. The distance between the markers on the curves in the
figures is many times the grid spacing used in the numerical
calculations.

Numerically calculated phase field profiles are shown for
different values of �i,j and a constant ratio �i,j /m in Fig. 4�a�
and for different ratios �i,j /m and constant �i,j in Fig. 4�b�.
Comparison of the numerically calculated profiles for �i,j
=1.5 with analytical profiles �23a� and �23b� indicates that
the numerically calculated profiles converge to the analytical
solution of Eqs. �6a� and �6b� and that the grid spacing re-
sults in well resolved phase field profiles. Since the homoge-
neous free energy is symmetrical with respect to the phase
field variables, the profiles �i�x� and � j�x� are each other’s
mirror image with respect to the center of the diffuse inter-

face region, where the phase field variables intersect; this
means that �i�x�=� j�−x�. The value at which the phase field
profiles intersect, �interf, depends only on the parameter �i,j.
This also follows from Eqs. �8a� and �8b� since f0 and
d�i /d� j are a function only of the model parameter �i,j, and
the parameters �i,j and m are constant along the interfacial
profiles. Except for �i,j =1.5, the profiles of the phase field
variables themselves are not symmetrical and their local sum
is not constant along the profiles. Condition �16a� is accord-

−10 −5 0 5 10
0

0.2

0.4

0.6

0.8

1

Distance

η i,η
j

−10 0 10

0.8

1

Distance

η
i
+η

j

γ
i,j

= 1

γ
i,j

= 1.5

Analytical
γ
i,j

=2

γ
i,j

=4

−10 −5 0 5 10
0

0.2

0.4

0.6

0.8

1

Distance

η i,η
j

κ
i,j

= 2, m = 1

κ
i,j

= 4, m = 1

κ
i,j

= 2, m = 2

−10 0 10
1

1.15

Distance

η
i
+η

j

−10 −5 0 5 10
0

0.2

0.4

Distance

dη
j
/dx

−10 −5 0 5 10
−0.4

−0.2

0

Distance

dη
i
/dx γ

i,j
= 1

γ
i,j

= 1.5

Analytical
γ
i,j

= 2

γ
i,j

= 4

γ
i,j

= 8

(b)

(a)

(c)

FIG. 4. �Color online� �a� Numerically calculated equilibrium
profiles for the phase field variables �i�x� and � j�x� across a grain
boundary for �i,j =2, m=1, and different values for �i,j. �b� Numeri-
cally calculated equilibrium profiles for the phase field variables
�i�x� and � j�x� across a grain boundary for �i,j =1 and different
combinations of the parameters �i,j and m. �c� Evolution of d�i /dx
and d� j /dx along the interfacial profile for �i,j =2, m=1 and differ-
ent values for �i,j. In �b� and �c�, the analytical curves obtained for
�i,j =1.5 are added.
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ingly not satisfied. For fixed �i,j values, the width of the
interfacial profiles is proportional to ��i,j /m �see also Sec.
II F�.

In Fig. 4�c�, the gradients of the phase field profiles are
plotted as a function of the distance from the middle of the
interface for different �i,j values and a constant m /�i,j ratio.
For �i,j =1.5, the curves are symmetrical with respect to x
=0 and the local gradients of �i and � j are equal in magni-
tude. By consequence, d�i /d� j =d� j /d�i=−1 along the pro-
files. For �i,j farther from 1.5, the curves become more asym-
metric and the local gradients of �i and � j differ. At the
middle of the interface, however, the gradients of the two
profiles are maximal in absolute value and equal in size for
all values of �i,j, giving �d�i /d� j�interf= �d� j /d�i�interf=−1.
The graphs also show that for a given ratio m /�i,j, the maxi-
mal gradient at the middle of the interface increases with the
value of �i,j. For fixed �i,j values, the gradients along the
phase field profiles are proportional to �m /�i,j �see relations
�8a� and �8b�
.

Although the evolution of each phase field variable to-
ward equilibrium is independent, there exists a relation be-
tween the local values of the two-phase field variables,
which are changing values across a diffuse boundary in local
equilibrium. This relation � j(�i�x�) �or �i(� j�x�) 
 depends
on the value of the model parameter �i,j and is plotted for a
number of �i,j values in Fig. 5�a�. The paths of ��i ,� j� values
across a diffuse grain boundary are also indicated on the
free-energy landscapes in Fig. 2. For �i,j =1.5, the path cor-
responds with the diagonal � j =1−�i and goes through the
saddle point of the homogeneous free energy at �i=� j =0.5.
For �i,j�1.5, the curves deviate toward the saddle point;
however, they do not reach it. Figure 5�b� shows how
d�i /d� j varies with the value of one of the phase field vari-
ables �i. Conforming with the results presented in Fig. 4�b�,
d�i /d� j may vary between 0 and −	, but equals −1 at x
=0 for all values of �i,j. For symmetrical profiles, d�i /d� j is
constant and equal to −1 along the whole profile.

In Fig. 6�a�, the value at which the phase field variables
cross, �interf, is compared with the coordinates of the saddle
point of the homogeneous free energy �saddle for a large
range of �i,j values. The difference between �interf and �saddle
is relatively small for �i,j, between 0.5 and 2, and increases
drastically for larger values of �i,j. For �i,j =1.5, �interf equals
�saddle; and for �i,j→0.5, �interf→�saddle=1 /�2, which is cal-
culated from Eq. �14� with �i,j =0.5.

E. Grain boundary energy

In diffuse interface models, the excess energy associated
with a grain boundary is smeared out over the diffuse grain
boundary region. Integration of the excess energy along the
phase field profiles gives the specific grain boundary energy,
which is a measurable quantity.

1. Spatial distribution of the excess energy

The integrant in Eq. �4� gives the local excess energy
density due to the presence of a grain boundary, which con-
sists of a homogeneous contribution, mf0, and a gradient
contribution, 0.5�i,j��d�i /dx�2+ �d� j /dx�2
. It follows from

relation �7� that both contributions are equal at every position
along the profiles.

For �i,j =1.5, the energy density curves can be calculated
analytically from Eqs. �19�, �23a�, and �23b�, giving

mf0��i�x�,� j�x�� = 2m�i
2�1 − �i�2

=
m

8
�cosh�� m

2�i,j
x��−4

, �24�

for the homogeneous energy density and

�i,j

2
��d�i

dx
�2

+ �d� j

dx
�2� = �i,j�d�i

dx
�2

=
m

8
�cosh�� m

2�i,j
x��−4

�25�

for the gradient energy density. The spatial distribution of the
excess energy density due to the presence of a grain bound-
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FIG. 5. �Color online� Variation of �a� � j and �b� d� j /d�i as a
function of �i along equilibrium phase field profiles across a grain
boundary, obtained from numerical simulations for different values
of the parameter �i,j �curves for d�i /d� j as a function of � j are
identical�. The intersections of the diagonal line �red� for �i=� j

with the � j��i� curves give the values at which the phase field
profiles cross at the center of the diffuse grain boundary region. For
the different values of �i,j, �interf is indicated with a �red� cross.
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ary is given by the sum of both terms. The curves reach a
maximum at the middle of the interface, where f0,interf
=m /8.

For arbitrary profiles ��i,j�1.5�, the free-energy curves
and their maximum at the middle of the diffuse grain bound-
ary region were calculated numerically for the equilibrium
phase field profiles described in Sec. II D. The spatial varia-
tion of the homogeneous and gradient contributions in the
energy density are plotted in Figs. 7�a� and 7�b� for different
values of the model parameters �i,j, �i,j, and m. For all pa-
rameter values, the curves are symmetrical and have a maxi-
mum at the middle of the profile. The major contribution to
the grain boundary energy is concentrated near the center of
the diffuse grain boundary region. Comparison of Figs. 7�a�
and 7�b� with Figs. 4�a� and 4�b� reveals that the tails of the
energy density peak are much shorter than those of the pro-
files of the phase field variables. For constant �i,j and m, the
maximum of the curves increases with increasing �i,j. For
constant �i,j, the height of the peak is proportional to m,
whereas �i,j has no effect on the height. Since the phase field
profiles are wider for larger values of the ratio � /m, a larger
value for � /m accordingly results in a wider energy density
peak in Fig. 7�b�.

The evolution of f0 across a diffuse grain boundary as a
function of one of the phase field variables is plotted for

different values of �i,j in Fig. 7�c�. The maximum of the
curve is always located at �i=�interf. The extra points for
various values of �i,j and m on the curve for �i,j =2 show that
the paths (�i ,� j��i�) and ��i , f0(�i ,� j��i�)� across a diffuse
grain boundary depend only on the model parameter �i,j.

The gradients of the phase field profiles are proportional
to the square root of the local value of the homogeneous
energy density �see Eq. �8a� and �8b�
. By consequence, the
maximum of f0 along the profiles determines the stability
and accuracy conditions for the numerical solution of the
phase field equations. The value of f0 at the middle of the
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FIG. 7. �Color online� �a� Profiles of the homogeneous and gra-
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diffuse interface region, f0,interf= f0��interf ,�interf�, was ob-
tained for a large range of �i,j values from the numerically
calculated profiles. The data points are plotted in Fig. 6�b�
and compared with analytical relation �15� for f0,saddle��i,j�
and analytical relation �19� for f0,symm��i,j�. As shown in
Figs. 2 and 6�a�, the path � j��i� across an interface in equi-
librium does not reach the saddle point of f0 except for �i,j
=1.5. By consequence, the numerically determined values
for f0,interf differ from f0,saddle, although the deviation is very
small for �i,j smaller than 2.5; see Fig. 8 for a quantitative
evaluation of the relative deviation. For larger values of �i,j,
the curves for f0,interf and f0,saddle diverge. The line for f0,symm
�Fig. 6�b�
 was obtained by evaluating Eq. �19� for sym-
metrical interfaces, at �i=0.5 and as a function of �i,j. It
gives the maximum of f0 along the diagonal � j =1−�i for
different values of �i,j. This curve reveals that the assump-
tion of a symmetrical interface with � j =1−�i, and accord-
ingly �interf=0.5, cannot give a good approximation for
f0,interf, the diffuse grain boundary width or the specific grain
boundary energy.

2. Specific grain boundary energy

For symmetrical profiles, substitution of Eqs. �16b� and
�19� into Eq. �10� gives

�i,j = 2�m�i,j�1

2
+ �i,j��

0

1

�i�1 − �i�d�i

=
1

3
�m�i,j�1

2
+ �i,j� �26�

=
�2

3
�m�i,j , �27�

for the specific grain boundary energy. The function g��i,j�,
introduced in Eq. �12�, accordingly equals �2 /3 for �i,j
=1.5. Furthermore, since for symmetrical interfaces f0,interf

= f0,saddle=1 /8, g��i,j�= 4
3
�f0,interf��i,j�= 4

3
�f0,saddle��i,j�.

To characterize the function g��i,j�=�i,j /��i,jm, the inte-
gral expression of the specific grain boundary energy �Eq.
�4�
 was numerically evaluated for a large number of �i,j
values between 0.52 and 40 using an interspacing 
�i,j
�0.05. Calculated function values are plotted as a function
of �i,j in Fig. 8 and compared with numerically calculated
values for 4 /3�f0,interf��i,j� and with the analytical curve
4 /3�f0,saddle��i,j� obtained from Eq. �15�. The figure shows
that the three relations coincide for �i,j =1.5 and that for
nearly symmetrical interfaces, the analytical equation
4 /3�f0,saddle��i,j� is a good approximation for the functions
g��i,j� and 4 /3�f0,interf��i,j�. For �i,j within the range �0.9
2.65
, the relative error is smaller than 1%, which is much
smaller than the scatter on experimental data for grain
boundary energies and mobilities, or the usual discretization
errors on the numerical solution of the phase field equations;
the relative error is smaller than 2% for �i,j in the range �0.75
3.45
 and smaller than 5% for �i,j in the range �0.53 6.5
.

Mostly,34,43,44 it is assumed that the grain boundary width
is proportional to �� / �
f�max and the specific grain boundary
energy with ���
f�max, where �
f�max is defined as the maxi-
mum height of the barrier in the homogeneous free-energy
density f between two degenerate minima, although it has
never been specified how this value is determined. It is not
clear whether it corresponds with the f0,interf or f0,saddle used
in this paper. Nevertheless, the numerically calculated curves
for g��i,j� and f0,interf��i,j� show that such an approach is not
fully quantitative for large variations in grain boundary en-
ergy �see also Sec. III B�.

F. Diffuse grain boundary width

In phase field simulations for grain growth, the width of
the diffuse grain boundaries is most often chosen based on
computational considerations. To increase the length and
time scale of the simulations, it is taken larger than the physi-
cal grain boundary thickness, but still several orders smaller
than the mean grain size. Since, strictly spoken, the diffuse
interface thickness reaches infinity, there are many possibili-
ties to define a measure for the grain boundary width. For
further analysis, we propose a definition that is based on the
absolute value of the gradients of the phase field profiles at
x=0:

�gb =
1

��d�i/dx�x=0�

=
1

��d� j/dx�x=0�
=� �i,j

mf0,interf
, �28�

which is obtained from Eqs. �8a� and �8b� evaluated at x=0,
where d�i /d� j =−1 and f0= f0,interf. Since the profiles are
steepest at the middle of the diffuse grain boundary region, a
grain boundary width defined in this way can be used in
numerical criteria for stability and accuracy.

Evaluation of expression �28� for symmetrical interfaces
using Eq. �22a� and �22b� with f0�1 /2,1 /2�=1 /8 or deriva-
tives �23a� and �23b� gives
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�gb =�8�i,j

m
. �29�

For asymmetrical profiles, the value of f0,interf must be calcu-
lated numerically as a function of �i,j. As shown in Fig. 6�b�,
f0,interf��i,j� is approximated very well by analytical relation
�15� for �i,j not too far from 1.5.

In Fig. 9, phase field profiles are shown for grain bound-
aries with different grain boundary energies, but equal width
according to definition �28�. All profiles have the same gra-
dient at the center of the diffuse grain boundary region. The
dotted lines give a graphical interpretation of the definition
of �gb. The lines pass through the point �0,0.5� and are par-
allel with the tangent to the phase field profiles at x=0. Then,
the grain boundary width equals the distance between the
two intersections of these lines with the x axis.

G. Grain boundary velocity

Mostly,45–48 the velocity of curved interfaces in phase
field models is derived for sharp interface conditions, where
it is assumed that the width �gb of the grain boundary is
much smaller than its radii of curvature, R1 and R2. Consider
thereto a grain with orientation i embedded in another grain
with orientation j, as illustrated in Fig. 1�b�. Furthermore, for
every point on the grain boundary surface a curvilinear co-
ordinate system �r , t1 , t2� is defined with r pointing outward
in the direction of the normal to the surface and t1 and t2
tangential to the surface. Reformulation of evolution equa-
tion �3� for the curvilinear coordinate system gives45,46

��i

�t
= − Li,j	m

� f0

��i
− �i,j� �2�i

�r2 + � 1

R1
+

1

R2
� ��i

�r
�
 ,

�30a�

�� j

�t
= − Li,j	m

� f0

�� j
− �i,j� �2� j

�r2 + � 1

R1
+

1

R2
� �� j

�r
�
 ,

�30b�

where it is applied that ��= ��� /�r�r, �2�=� ·��
= ��2� /�r2�+ �� ·r���� /�r�, and �� ·r�=1 /R1+1 /R2 with R1
and R2 as the principle radii of curvature.

For the considered boundary conditions

�i = 1 and � j = 0 for r → 0, �31a�

�i = 0 and � j = 1 for r → + 	 , �31b�

d�i

dr
=

d� j

dr
= 0 for r → 0, + 	 , �31c�

the term �i,j�1 /R1+1 /R2���i /�r forces the grain boundary to
move toward its center of curvature.45 It was however
derived47–49 that for �gb�R1 ,R2, the effect of this extra term
on the shape of the phase field profiles is negligible and that
conditions �6a� and �6b� are satisfied to leading order with x
measured along the normal to the grain boundary. Moreover,
if �gb�R1 ,R2, the mean curvatures 1 /R1 and 1 /R2 can be
considered to be constant within the thin grain boundary re-
gion where the phase field variables change their values. Un-
der this assumption, all contours of constant �i or � j value
move with the same velocity and the grain boundary velocity
vi,j is45

vi,j = � �r

�t
�

�i,�j=cte
=

� ��i/j

�t �r

� ��i/j

�r �t

, �32�

=− Li,j�i,j� 1

R1
+

1

R2
� , �33�

which is normal to the interface and negative when r is de-
fined to point outward as in Fig. 1�b�. In Appendix A, Eqs.
�6a�, �6b�, and �33� are derived in a more general way from
an asymptotic analysis.

In the sharp interface limit, the velocity of the grain
boundaries in phase field simulations is thus proportional to
their local mean curvature. This is in analogy with the sharp
interface Gibbs–Thomson law for grain boundary movement,

vgb = − �gb�gb� 1

R1
+

1

R2
� , �34�

which gives the grain boundary velocity in terms of the grain
boundary energy �gb and mobility �gb. Relation �34� is ex-
pressed in the same coordinate system as Eq. �33�. Compari-
son of both equations yields a relation between the phase
field model parameters and the grain boundary energy and
mobility,

�gb�gb = �i,jLi,j . �35�

Relations �33� and �35� are valid for symmetrical and asym-
metrical interfacial profiles.

To evaluate the validity of approximation �33�, the shrink-
age rate of a circular grain was determined from phase field
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FIG. 9. �Color online� Profiles of the phase field variables for
grain boundaries with different grain boundary energies and equal
diffuse grain boundary width, according to definition �28�. The pa-
rameter values m=0.6; �=0.8262, 1.0336, 1.3156, 1.4976, and
1.9838; and �=0.0371, 0.0523, 0.0675, 0.0750, and 0.0898 were
used in order to obtain a grain boundary width �gb=1 and grain
boundary energies �gb=0.05, 0.07, 0.09, 0.1, and 0.12, The dotted
lines give a graphical interpretation of definition �28�.
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simulations using varying grain boundary widths �gb and
grid spacings 
x. A standard finite difference discretization
with explicit time stepping was used for the numerical solu-
tion. The results are plotted as a function of the grain radius
in Fig. 10. The shrinkage rate is constant �which means that
the velocity is proportional to the curvature� and the simula-
tion results converge to the sharp interface approximation
�33� for �gb /R�1 /4. For the applied discretization tech-
nique, a poor resolution results in a too low shrinkage rate:
the relative deviations are approximately 0.25%, 1.3%, and
5% for �gb /
x equal to 13, 6.6, and 3.3 for R��gb. These
results confirm previous numerical tests.46

H. Calculation of the model parameters for uniform systems

From the analysis in the previous subsections, relations
can be derived that allow us to calculate appropriate param-
eters for the phase field equations �1�–�3�. The set of model
parameters should reproduce a given grain boundary energy
�gb and grain boundary mobility �gb and result in a diffuse
grain boundary width �gb that is prescribed by numerical
�accuracy and stability� and computational �computation
time and memory� considerations. Combination and rear-
rangement of Eqs. �12�, �28�, and �35� gives

� = �gb�gb

�f0,interf���
g���

�
3

4
�gb�gb, �36a�

L =
�gb

�gb

g���
�f0,interf���

�
4

3

�gb

�gb
, �36b�

m =
�gb

�gb

1

g����f0,interf���
�

3

4

1

f0,saddle���
�gb

�gb
. �36c�

The approximated expressions assume that g���
�4 /3�f0,interf����4 /3�f0,saddle���, which gives accurate re-

sults for � values around 1.5 �see Fig. 8�. If the approximated
expressions are not accurate enough, g��� and f0,interf��� can
be evaluated from a polynomial fitted through the numeri-
cally calculated values of g��� and f0,interf���. Fifth-order
polynomials, for example, fit smoothly the calculated data
points for g��� and f0,interf��� over a wide range of � values.

To calculate the model parameters, one must first decide
on the value of � and determine g��� and f0,interf���. With
these values, �, m, and L can be calculated from Eqs.
�36a�–�36c�. In previous grain growth simulations for uni-
form systems,7,12,13,26 � was always taken equal to 1, giving
very satisfactory results. However, the present analysis indi-
cates that �=1.5 might be a more appropriate choice, as it
results in symmetrical phase field profiles. For symmetrical
profiles, the approximations in relations �36a�–�36c� are ex-
act, resulting in simple relations between the model param-
eters and grain boundary energy and mobility. Moreover,
asymmetrical profiles have longer tails for the same grain
boundary width �see Fig. 9�; the sharp interface approxima-
tion �33� may therefore break down at a larger grain size,
although this effect is really small.

If the properties of the system are expressed in SI units,
namely, �gb �J /m2�, �gb�m�, and �gb �m4 /J s�, the model
parameters have the following dimensions, � �J/m�, L
�m3 /J s�, and m �J /m3�. The parameter � is dimensionless.

III. SYSTEMS WITH NONUNIFORM GRAIN BOUNDARY
PROPERTIES

In this section, the previous analysis is extended to sys-
tems with nonuniform grain boundary properties. The pur-
pose is to derive a methodology for calculating appropriate
model parameters ��� ,��, ��� ,��, L�� ,��, and m, which
reproduce accurately a given grain boundary energy
�gb�� ,�� and mobility �gb�� ,�� as a function of misorienta-
tion � and grain boundary inclination �. The model formu-
lation and parameters must guarantee a constant diffuse grain
boundary width, in order to resolve the movement of all
grain boundaries with an equal accuracy in the numerical
simulations. If there would be large variations in grain
boundary width with misorientation or inclination, the phase
field profiles across thinner grain boundary segments would
be less resolved than those across wider segments, while the
sharp interface approximation breaks down more easily for
wider segments. As a consequence, it would be difficult to
control the numerical accuracy of the simulations and artifi-
cial effects may be introduced.35

A. Model formulation for systems with nonuniform grain
boundary properties

Anisotropy is introduced in equations �1�–�3� by formu-
lating the parameters �, �, and L as a function of the misori-
entation � between adjacent grains and the inclination � of
the grain boundaries,

��i�r,t�
�t

= − L��,��
�F��1,�2, . . . ,�p�

��i�r,t�
, �37�

with
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FIG. 10. �Color online� Reduction in grain area per unit of time
for a circular grain as a function of the grain radius, obtained from
numerical simulations for �gb=0.25 and �gb=1, and different grain
boundary widths �gb and grid spacings 
x. For all simulations, �
=1. The values for �, m, and L were determined using
relations�36a�–�36c� with the appropriate values for �gb=0.25,
�gb=1, and �gb. The sharp interface approximation �33� predicts a
shrinkage rate equal to 2��gb�gb=� /2.
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F = �
V
�mf0��1,�2, . . . ,�p� +

���,��
2 �

i=1

p

���i�2�dV ,

�38�

and

f0��1,�2, . . . ,�p� = �
i=1

p ��i
4

4
−

�i
2

2
� + �

i=1

p

�
j�i

p

���,���i
2� j

2 +
1

4
.

�39�

In the most general case, � is a vector with three independent
coordinates, which define the misorientation between two
adjacent grains, and � a is vector with two independent �or
three normalized� coordinates, which define the inclination
of a grain boundary.5 An important difference with most
phase field models for anisotropic systems is that both the
homogeneous free energy and the gradient free energy may
be inclination dependent.

The local misorientation and grain boundary inclination
can be derived from the local values of the phase field vari-
ables and their gradients, resulting in the following model
parameter functions:

���,�� =

�
i=1

p

�
j�i

p

�i,j��i,j��i
2� j

2

�
i=1

p

�
j�i

p

�i
2� j

2

, �40a�

���,�� =

�
i=1

p

�
j�i

p

�i,j��i,j��i
2� j

2

�
i=1

p

�
j�i

p

�i
2� j

2

, �40b�

and

L��,�� =

�
i=1

p

�
j�i

p

Li,j��i,j��i
2� j

2

�
i=1

p

�
j�i

p

�i
2� j

2

. �40c�

The parameter m is constant throughout the system. Misori-
entation dependence is thus treated in a discrete way;
whereas for each misorientation, the parameters are continu-
ous functions of the grain boundary inclination �i,j. �i,j is a
normalized vector that specifies the orientation of the normal
to the grain boundary between grains with orientations i and
j. We relate the inclination �i,j to the local gradients of the
phase field variables ��i and �� j using the following func-
tion:

�i,j =
��i − �� j

���i − �� j�
, �41�

in which the two phase field variables are treated in an anti-
symmetric way, to obtain a vector perpendicular to the grain
boundary surface. In the formulation of Kazaryan et al.,50 the

local inclination is derived from the gradient of one of the
phase field variables, namely, from �i,j =��i / ���i�. How-
ever, when the grain boundary energy is inclination depen-
dent, the value at which the order parameter fields cross,
varies along the grain boundary and the gradient of each
phase field has accordingly a contribution along the tangen-
tial to the surface. Since this tangential contribution is equal
for both phase field variables, the vector ��i−�� j is always
perpendicular to the contour at which the phase field profiles
intersect. Formulations �40a�–�40c� allow us to specify for
each misorientation individually the value and inclination de-
pendence of the grain boundary energy and mobility. Within
a diffuse grain boundary region where �i and � j change val-
ues, ��� ,��=�i,j��i,j�, ��� ,��=�i,j��i,j�, and L�� ,��
=L��i,j�. Near triple junctions, there is a smooth transition
between the parameter functions for the misorientations of
the intersecting grain boundaries. With formulation �40b�,
homogeneous free energy �39� reduces to

f0��1,�2, . . . ,�p� = �
i=1

p ��i
4

4
+

�i
2

2
� + �

i=1

p

�
j�i

p

�i,j��i,j��i
2� j

2 +
1

4
.

�42�

In principle, there are many possibilities to introduce an-
isotropy in the free-energy functional. An appealing alterna-
tive is to assume �=1.5 constant and introduce the aniso-
tropy in the homogeneous free energy through the parameter
m and �, with

m��,�� =

�
i=1

p

�
j�i

p

mi,j��i,j��i
2� j

2

�
i=1

p

�
j�i

p

�i
2� j

2

�43�

and � as given in Eq. �40a�. The advantage is that the phase
field profiles are symmetrical for all grain boundaries and
that therefore there exist analytical relations between the
model parameters and grain boundary energy, mobility, and
width. However, application of this model showed that the
triple junction angles in the simulations are much more sen-
sitive to modifications of the interfacial width than is the
case for formulation �39�, although in the sharp interface
limit ��gb�R1 ,R2� both models result in correct triple junc-
tion angles. Impractical fine grid spacings are consequently
required to obtain accurate grain growth simulations. We
think that one reason for this difference in behavior in nu-
merical simulations between the two free-energy formula-
tions could be the fact that formulation �39� reduces to Eq.
�42�, whereas no reduction is possible for formulation �43�;
as a result, the grain boundary properties are interpolated in a
different way in the diffuse regions around the triple junc-
tions.

B. Misorientation dependence

If inclination dependence is neglected, it follows from
formulations �40a�–�40c� that k���=ki,j ,����=�i,j and L���
=Li,j are constant within the diffuse grain boundary region
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between grains with orientations i and j. By consequence,
relations �36a�–�36c� apply for an individual grain boundary.
One difficulty is that now there are different �i,j’s for grain
boundaries with different energies. These values must be
chosen so that each grain boundary has the correct energy,
while all grain boundaries have the same width. Due to the
complicated relations between the model parameter �i,j and
the grain boundary properties, an iterative procedure, de-
scribed by Algorithm 1, is required to obtain the �i,j for
different misorientations.

Algorithm 1 requires, as input, lists of discrete values
�gb,k and �gb,k, the desired grain boundary width �gb, and two
initial values �init and �gb,init. In the first step, the parameter
m, which is uniform throughout the system, is calculated
using the initial values �init and �gb,init. In the main step, an
iterative procedure is used for each k to calculate �k, �k, and
Lk. To start, a first estimate �� and �� is made based on ainit

calculated for �init or the ak calculated for the previous mis-
orientation. A new value ak

� is also computed for �� and ��. If
ak

��ainit, improved values for �� and �� are calculated based
on updated values for ak

� in subsequent iteration steps until
the values for ak

�, ��, and �� are self-consistent. Then, the
kinetic parameter Lk is calculated using the self-consistent
value for ak. The output of the procedure are the parameter m
and a list with the appropriate values for �k, �k, and Lk.

To be able to calculate g��k�, �k=g−1, and f0,interf��k� for
arbitrary values of �k, the numerically calculated function
values for f0,interf�1 /��, g2�1 /��, and �g2�−1�1 /�� were inter-
polated with fifth-order polynomials for � within the range
�0.55 8
. In step 3 of the algorithm, ��=g−1 is calculated via
the interpolated function g2�1 /��: g→g2→1 /��→��. If
all �k can be taken close to 1.5, the iterative procedure may
be avoided by assuming that g���= �4 /3���f0,interf
= �4 /3���f0,saddle.

Algorithm 1. Iterative procedure for the calculation of the phase field model parameters for a given set of grain boundary
energies �gb,k, grain boundary mobilities �gb,k, and a uniform grain boundary width �gb.

51

Input:
��gb,k�, ��gb,k�, �gb
�gb,init, �init

Initial Step: Calculate g��init�, f0,interf��init�, and ainit=�f0,interf��init� /g��init�
Calculate m from Eq. �36c� using �gb,init, �gb, f0,interf��init�, and g��init�

Body:
For each k:

Iterative calculation of �k, �k, and ak
1. Calculate ��=�gb,k�gbainit
2. Calculate g����=�gb,k /���m
3. Calculate ��=g−1

4. Calculate f0,interf���� and ak
�=�f0,interf���� /g����

5. If ak
��ainit, ainit=ak

� and go to 1,
else �k=��, �k=��, ak=a�

Calculate Lk from Eq. �36b� using �gb,k, �gb, and ak

Output:
m, ��k�, ��k�, �Lk�

At the beginning of the procedure, it is arbitrarily chosen
that ���init�=�init. The parameter values for the other misori-
entations follow from this choice. For different initial values,
a different set of model parameters is obtained, which results
in the same grain boundary energies, mobilities, and uniform
grain boundary width. We advice to choose �init around 1.5
for a �init within the range of the �k values, in order to obtain
close to symmetrical grain boundary profiles.

As the function g��� flattens for larger values of �, there
is a limit on the ratio �max /�min that can be covered by the
model. From the numerically calculated data for g��i,j�,
it is derived that for � in the range �0.9 2.65
,
g��i,j�� �0.36 0.56
 and �max /�min=gmax

2 /gmin
2 =2.38; for

�� �0.75 3.45
, g��i,j�� �0.30 0.59
 and �max /�min
=gmax

2 /gmin
2 =3.73; for �� �0.53 6.5
, g��i,j�� �0.12 0.65


and �max /�min=gmax
2 /gmin

2 =29.4; for �� �0.52 8
,
g��i,j�� �0.0985 0.67
 and �max /�min=gmax

2 /gmin
2 =45.8; and

for �� �0.52 40
, g��i,j�� �0.0985 0.76
 and �max /�min
=gmax

2 /gmin
2 =60.4. The latter may be considered as the prac-

tical limit.

C. Inclination dependence

For a given inclination �i,j, the parameters �i,j��i,j�,
�i,j��i,j�, Li,j��i,j�, and m are constant along the normal to the
grain boundary. In Appendix A, it is explained how to extend
the asymptotic analysis described in Refs. 47–49 to equa-
tions �37�–�39�. It is derived that the profiles of the phase
field variables across a grain boundary satisfy Eqs. �6a� and

QUANTITATIVE ANALYSIS OF GRAIN BOUNDARY… PHYSICAL REVIEW B 78, 024113 �2008�

024113-13



�6b� to leading order for �gb�R1 ,R2, with x measured along
the normal to the surface and �i,j =�i,j��i,j� and �i,j
=�i,j��i,j� constant along the profiles. Consequently, rela-
tions �12� and �28�, with g��i,j� and f0,interf��i,j� as calculated
for uniform systems, apply along each direction �i,j, giving

�gb��i,j,�� = g��i,j��i,j����i,j��i,j�m , �44�

and

�gb =� �i,j��i,j�
mf0,interf��i,j��i,j��

, �45�

in which �gb��i,j ,�� refers to the inclination-dependent spe-
cific energy of a grain boundary between the grains with
orientations i and j. Furthermore, it is obtained that in the
sharp interface limit, the normal velocity of each point on a
grain boundary equals

vgb,n = − Li,j��i,j�
��i,j��i,j�

g��i,j��i,j��
	 1

R1
���i,j��i,j�g��i,j��i,j��

+
�2���i,j��i,j�g��i,j��i,j���

�
1
2 �

+
1

R2
���i,j��i,j�g��i,j��i,j��

+
�2���i,j��i,j�g��i,j��i,j���

�
2
2 �
 , �46�

with �i,j �defined as in Eq. �41�
 as the normal direction and
R1, R2, 
1, and 
2 defined in a curvilinear coordinate system
as shown in Fig. 1�b�. For sharp interface systems with in-

clination dependence, Herring’s formula52,53 prescribes a
normal velocity vgb,n,

vgb,n = − �gb���	 1

R1
��gb��� +

�2�gb���
�
1

2 �
+

1

R2
��gb��� +

�2�gb���
�
2

2 �
 , �47�

with �gb���+
�2�gb���

�
1
2 and �gb���+

�2�gb���
�
2

2 as the diagonal el-
ements of the grain boundary stiffness tensor. Comparison of
Eq. �46� with Eq. �47�, considering relation �44�, shows that
relation �35� as well remains valid for individual directions
�i,j, giving

�gb��i,j,���gb��i,j,�� = �i,j��i,j�Li,j��i,j� , �48�

with �gb��i,j ,�� and �gb��i,j ,�� defined as in relation �44�.
To formulate the inclination-dependent model parameters

�i,j��i,j�, �i,j��i,j�, and Li,j��i,j�, it is assumed that the grain
boundary properties of the system are characterized by a set
of inclination-dependent grain boundary energies �gb,k���
= �̄gb,kf�,k��� and mobilities �gb,k���= �̄gb,kf�,k���, where k
refers to different misorientations �the difference in orienta-
tion between grains with orientations i and j, for different
combinations of i and j� and � is the inclination of the
boundary measured with respect to the crystal lattice of one
of the adjacent grains. The grain boundary energies and mo-
bilities may have different inclination dependences and the
inclination dependence may vary with misorientation. Com-
parison of Eq. �46� with Eq. �47� indicates that the choice of
appropriate inclination-dependent functions for the model
parameters is considerably simplified if �i,j��i,j� and g2��i,j�
are assumed to have the same inclination-dependent factor as
the specific grain boundary energy, namely, �k���
= �̄kf�,k��� and g2(�k���)=g2��̄k�f�,k��� . Equation �46� then
simplifies to

vgb,n = − Li,j��i,j�� 1

R1
��i,j��i,j� +

�2�i,j��i,j�
�
1

2 �
+

1

R2
��i,j��i,j� +

�2�i,j��i,j�
�
2

2 �� , �49�

and it follows from relation �48� that Lk��� has the same
inclination-dependent factor as the grain boundary mobility
�gb���. Unfortunately, this choice of the model parameter
functions does not guarantee a constant grain boundary
width for large variations in grain boundary energy �see Eq.
�45� and Fig. 8
. Therefore, two different approaches are pro-
posed for the two extreme cases of weak �smooth bound-
aries� and strong �faceted boundaries� inclination dependence
of the grain boundary energy. To support the explanation, a
number of inclination-dependent factors f���� with different
shapes and strengths, typically used for two-dimensional
�2D� systems, are shown in Fig. 11. More functions, also for
three-dimensional �3D� systems, are available in the
literature.58,59 Intermediate cases, as for example plots �c�
and �e� in Fig. 11, can be treated by both approaches. Since
grain growth may be considered as a slow process and at-
tachment kinetics in metals are relatively fast, it is assumed
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FIG. 11. Polar plots of a number of inclination-dependent func-
tions f���� for 2D systems. The equilibrium shape of the crystal,
determined according to Wulff’s theorem �Ref. 54� is plotted in
bold. It contains only those orientations for which f����
+df���� /d��0. For simulations, the nonconvex parts must be
regularized as described in Refs. 55–57.
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in the further explanation that the shape of the crystals is
primarily determined by the inclination dependence of the
grain boundary energy.

1. Weak inclination dependence

When the inclination dependence of the specific grain
boundary energy is smooth, all or most grain boundary incli-
nations may occur from a thermodynamic point of view. It is
thus important that the set of model parameters reflects the
full inclination dependence of the specific grain boundary
energy, stiffness, and mobility to obtain correct grain bound-
ary behavior in the simulations. On the other hand, the varia-
tions in grain boundary energy are small. Therefore, the fol-
lowing inclination-dependent parameter functions are most
convenient:

�i,j��i,j� = �̄kf�,k��� , �50a�

�i,j��i,j� = g−1with

g2��i,j� = g2��̄k�f�,k��� , �50b�

and

Li,j��i,j� = L̄kf�,k��� , �50c�

where k is the misorientation between grains i and j, � is the
inclination of the boundary defined with respect to the crystal
lattice of 1 of the adjacent grains and �i,j the inclination
angle defined with respect to the system �by Eq. �41�
 and
related to �i,j through the orientations i and j. The values for

m, �̄k=, g2��̄k�, �̄k, and L̄k can be calculated for each misori-
entation �k with Algorithm 1, using the given �̄gb,k, �̄gb,k and
an appropriate value for �gb as input data. It can be verified
for parameter functions �50a�–�50c� that variations in grain
boundary width with inclination are negligible for weak and
moderate inclination dependence of the specific grain bound-
ary energy, since the � dependence of the ratio ak

=g��k� /�f0,max��k� may be considered to be constant within
limited ranges of �k values. For �k varying between 0.9 and
2.65, the deviations in grain boundary width are smaller than
0.81%; for �k between 0.75 and 3.45, they are below 1.6%.

For �k not too far from 1.5, g��k� is approximated closely
by the analytical function for 4 /3�f0,saddle��k� �see Fig. 8�.
Then, a differentiable function for �k��k�,

�k��k� =
− 9

4g2��̄�f�,k��k� − 1
9
2g2��̄�f�,k��k� − 2

, �51�

can be obtained from relation �15�. More generally, differen-
tiable functions for the inclination dependence of �k��k� can
be obtained by fitting polynomials through the numerically
calculated data points for g��k� within the ranges of g��k�
values of interest, namely, those covering f�

min and f�
max, al-

though for large ratios f�
max / f�

min, the procedure for strong
inclination dependence is more appropriate.

In most phase field models, the inclination dependence of
the grain boundary energy is completely treated in the gradi-
ent term of the free-energy functional, resulting in straight-
forward inclination-dependent relations between the model

parameters and the grain boundary energy. However, in this
way the variations in grain boundary width with inclination
are linearly proportional to the variations in grain boundary
energy. Moreover, in these models the inclination depen-
dence of the gradient term contributes to the inclination de-
pendence of the grain boundary mobility. In relation
�50a�–�50c�, by contrast, the inclination dependence of the
kinetic coefficient is directly related to that of the grain
boundary mobility.

2. Strong inclination dependence

In the case of strong anisotropy, there are large variations
in specific grain boundary energy with inclination. The
inclination-dependent parameter functions �50a�–�50c� may
then result in variations in grain boundary width with incli-
nation and more complicated functions would be required to
interpolate �=g−1 over a wider range of �k values in Eqs.
�50b�. Moreover, due to strong variations in �gb with incli-
nation, only a limited number of discrete inclinations, or very
narrow inclination ranges, are thermodynamically stable,
namely, those for which f����+df���� /d��0 �or the trace
of the stiffness tensor is positive for 3D systems�. The plots
�d�–�f� in Fig. 11 also show that the crystal shape is mainly
determined by the extrema of the inclination-dependent fac-
tor f���� and that within a range of stable inclinations, the
variation of f���� is very limited. It is actually most impor-
tant that the parameters in the phase field model reproduce
accurately the extrema of the inclination-dependent factor. In
the case of strong inclination dependence, the following pro-
cedure is accordingly more appropriate to determine
inclination-dependent functions for the model parameters in
the phase field model.

First, a set of discrete values �k,l, �k,l, Lk,l, and m is cal-
culated using Algorithm 1 with a list of �gb��k ,�k,l� and
�gb��k ,�k,l� values and an appropriate grain boundary width
�gb as input. The �k,l are discrete inclinations for which
f�,k��� is extremal. The iterative calculation in the body of
Algorithm 1 is now performed for each extremal inclination
�k,l for each misorientation �k. The inclination-dependent
model parameters for each misorientation k are subsequently
formulated as

�i,j��i,j� = �̄kf�,k� ��� , �52a�

�i,j��i,j� = �̄kf�,k� ��� , �52b�

Li,j��i,j� = L̄kf�,k��� . �52c�

The functions f�,k� ��� and f�,k� ��� have cusps and extrema at
the same inclinations as f�,k���, the inclination-dependent
factor of the specific grain boundary energy. Furthermore,
the values of �̄k and �̄k are taken so that the extremal values
of �̄kf�,k� ��� and �̄kf�,k� ��� equal the �k,l and �k,l calculated in
the first step for the extremal values of the specific grain
boundary energies. An easy way to fulfill these requirements
is to give f�,k� and f�,k� a similar form as f�,k, with, for ex-
ample, for the function plotted in Fig. 11�d�,

�k� =
�max/�min − 1
�2 − �max/�min

,
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�̄k =
�max

1 + �2�k�
=

�min

1 + �k�
,

or for the functions plotted in Figs. 11�e� and 11�f�,

�k� = �max/�min − 1,

�̄k = �max = �min�1 + �k�� .

In both cases �max and �min are the �k,l calculated for the
inclination l for which the specific grain boundary energy is
maximal or minimal. As the range of stable inclinations and
the variation of the specific grain boundary energy within
these ranges are extremely small and primarily determined
by the extrema, the inclination dependence of the homoge-
neous free energy is formulated directly for the parameter �.

D. Force balance at edges and multijunctions

If the specific grain boundary energy of each grain bound-
ary is correctly reproduced in the simulations, one may ex-
pect that Young’s law, and more generally the Herring rela-
tion, are fulfilled at the triple junctions since they follow

from energy considerations.53,60 For a number of phase field
models it has been verified that in the limit of sharp inter-
faces ��gb�R1 ,R2�, surface tensions are balanced at edges
and triple junctions.48,61 In Appendix A, a similar analysis is
applied to the present model. One result is that the force due
to its specific energy of a grain boundary between grains i
and j acting on a plane that cuts the boundary perpendicu-
larly equals to leading order

f =
�

�
1
	�i,j�

0

	 �� ��i

�r �2

+ � �� j

�r �2�dr
r

− �i,j	�
0

	 �� ��i

�r �2

+ � �� j

�r �2�dr
t1

=
��gb

�
1
r − �gbt1, �53�

with r, t1, and t2 curvilinear; t1 perpendicular to the plane;
and t2 common to the plane and the grain boundary surface.
The tangential term drives the grain boundary to move to-
ward its center of curvature to shorten its length. The radial
term is a torque that forces the grain boundary to reorient

TABLE I. �Color online� Triple junction angles as obtained in simulations for a triple junction in equi-
librium �Y� and one in steady-state movement �T�. The effect of grain boundary width �gb and grid spacing

x was studied for three different configurations, with a theoretically expected value for the angle �c equal
to 102, 6°;120°; and 138, 15°.

Geometries Equilibrium �Y� Steady State �T�

Young’s law �c=102, 60° �c=120, 00° �c=138, 15°

�cos��c /2�=0.625� �cos��c /2�=0.500� �cos��c /2�=0.357�
�x=0.2, �gb=0.5 110,0 �Y� 121,3 �Y� 140,2 �Y�

�0.568� �0.490� �0.343�
107,5 �T� 119,8 �T� 139,9 �T�

�0.594 0.502 0.343

�x=0.2, �gb=1 109.1 �Y� 120,3 �Y� 139,2 �Y�
�0.577 0.498 0.356

103,8 �T� 117,3 �T� 138,3 �T�
0.617 0.520 0.356

�x=0.1, �gb=0.5 109,1 �Y� 120,3 �Y� 139,2 �Y�
0.577 0.498 0.353

105,7 �T� 118,4 �T� 138,7 �T�
0.606 0.512 0.353

�x=0.1, �gb=1 108,8 �Y� 120,3 �Y� 139,0 �Y�
0.582 0.498 0.357

104,7 �T� 117.6 �T� 138,2 �T�
0.619 0.516 0.357

�x=0.1,�gb=2 108,8 �Y� 120,3 �Y� 139,2 �Y�
0.592 0.498 0.369

103,3 �T� 116.6 �T� 136,7 �T�
0.617 0.523 0.369
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itself toward an orientation with lower energy.
Considering a closed surface that cuts all grain boundaries

meeting at an edge or multijunction perpendicularly, applica-
tion of Neother’s theorem subsequently gives

�
k

��gb��k,
1,k�
�
1,k

rk − �gb��k,
1,k�t1,k = 0, �54�

where the sum is taken over all grain boundary segments that
meet at the junction. rk and t1,k are the radial and tangential
curvilinear coordinate for grain boundary k, 
1,k is the incli-
nation angle measured in the plane �rk, t1,k�, and the inter-
section line of the grain boundaries is directed along t2,1
= t2,2= t2,k. Equation �54� gives exactly the same force bal-
ance requirements for edges and multijunctions as obtained
in sharp interface models.60

The effect of the diffuse grain boundary width �gb and the
grid spacing 
x on the triple junction angles obtained in
numerical simulations was studied for junctions in equilib-
rium �Y� and in steady-state motion �T� �see Table I�. The
triple junction angle �c in the simulations was calculated
from the curvature of the curved boundaries for the T geom-
etry and from the slope of the diagonal lines for the Y geom-
etry. Both measures were determined from the contours at
the middle of the interface where two phase fields cross. In
Table I, the angles obtained in the simulations are compared
with the theoretically expected value for three different com-
binations of grain boundary energies. The cosine of the
angles is also listed, as it is in fact this quantity that deter-
mines the curvature and the movement of the intersecting
grain boundaries. For �c�120°, the theoretical values are
very well reproduced for �gb /
x�5, which is not more re-
strictive as the requirement for accurate curvature driven
grain boundary movement �see Sec. II G�. Those obtained
during steady-state motion are slightly smaller than the equi-
librium angles. Since this deviation increases with grain
boundary width, we devote it to the diffuse character of the
boundaries. Probably, at and near the triple junction, the two
curved boundaries attract each other from the outside. For
�c�120°, the angle �c itself is less well reproduced. How-
ever, for small angles, the cosine varies less with its argu-
ment. Therefore, cos��c�, and consequently the grain bound-
ary curvature and velocity, are reproduced with an equal
accuracy as is the case for �c�120°, in the simulations for
steady-state motion �T�. For the junctions in equilibrium �Y�,
it was difficult to measure accurately the small triple junction
angles ��c�120°�; the angle had to be determined from a
few grid points since the diagonal lines have the tendency to
meet the system boundaries perpendicularly, affecting the in-
clination of the line up to close to the triple junction for
small angles. Although the results obtained for the configu-
ration for steady-state motion show that a triple junction
angle of �c=102,6° is also well reproduced in the simula-
tions. For larger differences between �gb,max and �gb,min, i.e.,
for triple junction angles smaller than 102.6° or larger than
138.15°, an increasing ratio �gb / �
x� is required to obtain
the same accuracy, also for the steady-state geometry.

E. Difficulties of a fully variational approach with respect to
misorientation dependence

Since � is a function of the phase field variables and their
gradients, in a fully variational approach, the contribution
from the gradient energy in the thermodynamic driving
forces62 �F /��i should be calculated as41

�

��i
�

V
��

2 �
j=1

p

��� j�2�dV

=
1

2
� ��

��i
��

j=1

p

��� j�2 − � · �1

2
� ��

���i
��

j=1

p

��� j�2

+ � � �i� , �55a�

with

− � · �1

2
� ��

���i
��

j=1

p

��� j�2� = −
1

2�
j=1

p

��� j�2 � · � ��

���i
�

−
1

2

��

���i
· ���

j=1

p

��� j�2� ,

�55b�

− � ·
��

���i
= − � · �

j�i

p � ��

��i,j

��i,j

���i
�

= − �
j�i

p �� �2�

��i,j
2 � �i,j

+ �
k=1

p
�2�

��k � �i,j
� �k� ·

��i,j

���i
�
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FIG. 12. �Color online� Simulation results that are obtained
when the � dependence of the parameter � is considered in the
driving force: �a� effect of an extra phase field variable, �k�0, on
the profiles of the phase field variables �i and � j for �i,k /�i,j

=7 /10, and �b� profiles of the extra phase field variable �k for
different ratios of �i,k /�i,j.
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− �
j�i

p
��

��i,j
� · � ��i,j

���i
� , �55c�

and

− � · �� � �i
 = − ���� · ���i� − ��2�i = − �
j=1

p � ��

�� j
�

���� j� · ���i� − �
j=1

p

�
k�j

p � ��

�� j,k
�

���� j,k� · ���i� − ��2�i. �55d�

The derivatives of �i,j with respect to the gradients of the
phase field variables, ��i,j /���i, give rise to a driving force
that rotates the grain boundary toward a direction with lower
energy, which is observed on a mesoscale for metals. The
derivatives of � with respect to the phase field variables,
�� /��i, result in a driving force that changes the local mis-
orientation toward one with a lower energy, by changing the
local values of the phase field variables. For instance, if
�i,k=� j,k��i,j, the value of � in the diffuse grain boundary
region between grains i and j is lowered when the phase field
variable �k�x� takes a finite value at the interface since Eq.
�40a� then gives

� =
�i,j�i

2� j
2 + �i,k�i

2�k
2 + � j,k� j

2�k
2

�i
2� j

2 + �i
2�k

2 + � j
2�k

2 �
�i,j�i

2� j
2

�i
2� j

2 = �i,j .

Finite values for �k at the grain boundary between grains i
and j give also rise to extra positive contributions in the free
energy, namely, �� /2����k�2, �i,k�i

2�k
2, and � j,k� j

2�k
2. How-

ever, for a large enough difference between �i,k and �i,j, the
decrease in the free energy due to the local reduction in the
value of � overcomes the increase due to the extra terms in
the free energy. This is illustrated in Fig. 12. The presence of
an extra phase field variable in the diffuse grain boundary
region disturbs the original profiles for �i�x� and � j�x�. The
magnitude of the contribution from the third phase field vari-
able �k depends on the relative values of the grain boundary
energies �i,j, �i,k, and � j,k. As a result, the specific grain
boundary energy and the grain boundary velocity in the
simulations is lower than expected from relations �44� and
�46�, and the equilibrium angles between intersecting grain
boundaries at triple junctions deviate from the theoretical. If
more phase field variables are added to the representation,
several extra contributions may appear at a grain boundary.
Remark that expression �42� for the homogeneous free en-
ergy does not give rise to such a driving force for relaxation
with respect to misorientation.

This local relaxation with respect to misorientation at
grain boundaries is indeed relevant for diffuse boundaries.
However, in the case of metals, the diffuse character of the
grain boundaries is artificially introduced in phase field mod-
els to avoid tracking of the moving grain boundaries. In re-
ality, grain boundaries in metals are atomically sharp transi-
tions from one crystal orientation to another. Local
relaxations at grain boundaries are on the atomistic scale and
should not be treated explicitly in mesoscale grain growth
simulations. In fact, their effect is already accounted for in

the mesoscopic values of the specific grain boundary energy
and mobility. To obtain in the phase field simulations the
grain boundary behavior observed for metals and to repro-
duce the parameter relations �36a�–�36c� exactly for indi-
vidual grain boundaries and inclinations, the local values of
�, �, and L must be considered as fixed for a given grain
configuration. The � dependence of � is by consequence
merely to locate and characterize the grain boundaries and
must be omitted in the derivation of the driving force, giving

�1/2����/��i��
j=1

p

��� j�2 = 0, �56a�

�
k=1

p
�2�

��k � �i,j
� �k = 0, �56b�

and

�
j=1

p
��

�� j
��� j� · ���i� = 0 �56c�

in Eqs. �55a�, �55c�, and �55d�. Note that terms �56a�–�56c�
equal zero anyway within grains �where �i� j�i�i

2� j
2=0 and

�����i�2=0
� and at grain boundaries �where �=�i,j��i,j�
does not directly depend on the phase field variables �i
. By
consequence, all results from the sharp interface asymptotic
derivation in Appendix A remain valid if restrictions
�56a�–�56c� are applied. Only at junctions where three or
more grain boundaries intersect, a finite contribution is ne-
glected by omitting the � dependence of �. The results in
Table I and other applications of the model37,63 show that the
theoretical equilibrium angles at triple junctions are well re-
produced, if the resolution of the numerical technique is high
enough. Nevertheless, it remains to be analyzed in more de-
tail if and to which extent restrictions �56a�–�56c� affect, for
example, the kinetic behavior of multijunctions in the simu-
lations.

To allow a fully variational derivation of the kinetic equa-
tions, the free-energy functional should be formulated in
such a way that the presence of extra phase field variables at
interfaces give rise to an increase in the grain boundary en-
ergy for any ratio of the parameters. This is the case for
equations �1� and �2� with constant model parameters. For
the model for nonuniform grain boundary properties, the
contribution from extra phase field variables at grain bound-
aries is largely reduced when using higher powers of the
phase field variables in Eqs. �40a�–�40c�, namely,

� =
�i,j�i

2a� j
2a

�i
2a� j

2a ,

with a�1. However, ever increasing powers are required for
larger ratios of �max /�min, which is impractical for the nu-
merical solution. Other approaches have been proposed to
avoid or limit the presence of extra phase field variables at
interfaces.33,64,65 Still, it seems to be extremely difficult to
formulate a free energy for diffuse interface systems that
avoids completely the presence of extra phases at grain
boundaries for arbitrary systems �arbitrary number of orien-
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tations, arbitrarily high ratio of �gb,max /�gb,min� and is also
applicable for numerical simulations. Moreover, in other me-
soscale simulation techniques for grain growth, such as the
Monte Carlo technique,16 the local grain boundary energy is
also determined based on the orientations of the neighboring
grid points and changes ad hoc when the orientation of one
of the neighboring grid points has changed due to grain
boundary movement. Local changes in the misorientation,
driven by the possibility to obtain a lower value for the spe-
cific grain boundary energy, are not considered either.

IV. CONCLUSIONS

A generalized phase field model has been formulated to
perform simulations for grain growth in anisotropic systems
with a high controllability of the numerical accuracy. Fur-
thermore, an iterative algorithm is derived to calculate an
appropriate set of misorientation-dependent model param-
eters that reproduces the given grain boundary energy and
mobility. Inclination and misorientation dependence of the
grain boundary energy is reflected by both the homogeneous
and gradient contributions in the free energy. The proposed
model formulation and model parameter choice guarantee a
constant diffuse grain boundary width in order to resolve the
movement of all grain boundaries with the same accuracy.
The model can describe arbitrary misorientation and inclina-
tion dependence of the grain boundary energy and mobility,
such as low-energy cusps in the grain boundary energy for
high-angle misorientations and arbitrarily strong inclination
dependence of the grain boundary properties.

The free energy and the diffuse profiles of the phase field
variables at grain boundaries have been analyzed using a
combined analytical and numerical approach. Properties re-
lated to the specific grain boundary energy and diffuse inter-
face width were calculated numerically for a large range of
values of the dimensionless model parameter �. The calcu-
lated data were interpolated using polynomials and other
analytical functions. In this way, relationships with very high
accuracy are obtained between the model parameters and
grain boundary properties. The width of the diffuse grain
boundaries in the phase field description is defined referring
to the maximum gradient of the phase field variables, so that
it can be used as a parameter in numerical criteria.

Since structural relaxations at grain boundaries are on an
atomistic scale and should not be considered in mesoscale
simulations, the model parameters have discrete values for
discrete misorientations and are assumed to be fixed for a
given grain configuration. On the other hand, to describe the
grain boundary reorientation due to the Herring torque,
which occurs on a mesoscale, the free energy and the model
parameters are differentiable with respect to inclination de-
pendence.

Test applications show that the theoretically expected
grain boundary curvature and velocity are well reproduced
for R /�gb�4 and �gb /
x�10 and triple junction angles be-
tween approximately 100° and 140°, with �gb as the diffuse
grain boundary width, R as the mean grain boundary curva-
ture, and 
x as the grid spacing. A higher �gb /
x ratio is
required �still assuming R /�gb�4� to resolve triple junctions

with larger differences in the grain boundary energies of the
intersecting grain boundaries. A similar difficulty in resolv-
ing small triple junction angles was experienced for Monte
Carlo simulations.21 One advantage of the proposed phase
field methodology compared to Monte Carlo simulation tech-
niques is that depending on the mean grain size, the reso-
lution of the phase field profiles at grain boundaries and
triple junctions may be improved by taking a larger diffuse
interface width while keeping the grid spacing constant,
which requires less computational power. This possibility
will be explored in future applications of the model.

Furthermore, expressions �38� and �39� for grain bound-
ary or interface energy can be combined with bulk free en-
ergies for different phases and the thin-interface techniques
developed for alloys.29–33,66 In this way, a very general me-
soscale modeling approach is obtained to perform efficiently
quantitative simulations, 2D and 3D, of phase transforma-
tions, diffusion, and coarsening in polycrystalline multiphase
and multicomponent structures.
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APPENDIX A: ASYMPTOTIC ANALYSIS

In this appendix, a sharp interface derivation of the grain
boundary velocity and the force balance equations at edges
and multijunctions is given for the model presented in this
paper. We mainly follow the procedures given in Refs. 48,
49, and 61. To be illustrative and simplify the notation, a
two-dimensional system is considered. The inclination �i,j
= ���i−�� j� / ����i−�� j�� then corresponds with a single in-
clination angle

�i,j� = arctan��y�i − �y� j

�x�i − �x� j
� , �A1�

measured with reference to the axis of the x coordinate. The
evolution equations for a two-grain system with inclination-
dependent grain boundary energy are

��i

�t
= − Li,j�m

� f0

��i
− m � · � ��i,j

��i,j�

��i,j�

����i�
�i

2� j
2�

− � · 	1

2

��i,j

��i,j�

��i,j�

����i�
����i�2 + ��� j�2
 + �i,j � �i
� ,

�A2a�

�� j

�t
= − Li,j�m

� f0

�� j
− m � · � ��i,j

��i,j�

��i,j�

���� j�
�i

2� j
2�

− � · 	1

2

��i,j

��i,j�

��i,j�

���� j�
����i�2 + ��� j�2
 + �i,j � � j
� .

�A2b�

Elaboration of the separate terms in the equation for �i,
using the relations worked out in Appendix B, gives
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− m � · � ��i,j
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�x�i − �x� j
� · �

�i
2� j

2

���i − �� j�2



= − m� �2�i,j

��i,j�2

�i
2� j

2

���i − �� j�
� ·

��i − �� j

���i − �� j�
� �+ O�1�
 , �A3�

− � · 	1

2

��i,j�

��i,j�

��i,j�

����i�
����i�2 + ��� j�2

 = −

1

2
� �2�i,j

��i,j�2

���i�2 + ��� j�2

���i − �� j�2
���i,j� � · �− �y�i − �y� j

�x�i − �x� j
�

+
��i,j

��i,j�
�− ��y�i − �y� j�

�x�i − �x� j
� · �

���i�2 + ��� j�2

���i − �� j�2
�

= −
1

2

�2�i,j

��i,j�2

���i�2 + ��� j�2

���i − �� j�2
���i − �� j� � ·

��i − �� j

���i − �� j�
�+ O�1�
 , �A4�

and

− � · �� � �i
 = −
��i,j

��i,j�2 � �i,j� · ��i − ��2�i. �A5�

Analogous expressions are obtained for � j except that Eqs.
�A3� and �A4� change sign because of the antisymmetric
formulation of �i,j with respect to �i and � j.

If �i,j��i,j� � is replaced by �ki,j��i,j� �
2, and accordingly
��i,j /��i,j� by 2ki,j�ki,j /��i,j� and �2�i,j /��i,j�2 by
2���ki,j /��i,j��2+ki,j�

2ki,j /��i,j�2
, expressions �A4� and �A5�
resemble the terms in Eq. �27� of Ref. 49 except that there is
a dependence of two phase field variables. More specifically,
expression �A5� corresponds to the first and second terms on
the right-hand side and expression �A4� to the third term.
The contributions from these terms to the leading- and first-
order solutions of the phase field equations are thus taken
from Ref. 49. Contribution �A3�, which comes from the in-
clination dependence of the homogeneous free energy, is not
present in the evolution equation for the model discussed in
Ref. 49. Applying asymptotic expansions �55�–�58� from
Ref. 49, it can be verified that the effects from contribution
�A3� on the solution of the phase field equations �this in-
volves multiplication of Eqs. �A3�–�A5� with �2
 are of first
and higher order in �, with �=�gb /R as a dimensionless mea-
sure for the diffuse interface width and R as the radius of
curvature in two dimensions.

Comparison of the different terms in Eqs. �A4� and �A5�
with those on the right-hand side of Eq. �27� of Ref. 49 and
following the procedure described in Ref. 49 shows that the
phase field profiles �i�r� and � j�r� across a diffuse grain
boundary satisfy, to leading order, Eqs. �6a�, �6b�, and �7�
derived for a flat grain boundary, with �i,j =�i,j��i,j� � and
�i,j =�i,j��i,j� � constant and x replaced by r, the coordinate
along the normal to the grain boundary surface. The same
result can be obtained by evaluating Eq. �A2a� and �A2b� for
a flat interface. Furthermore, since Eqs. �A3� and �A4� are
opposite in sign for �i and � j, the integrated Euler equation

for the phase field profiles across a grain boundary in equi-
librium between two grains gives

mf0 +
�i,j

2
����i�2 + ���i�2
 − ��i ·

�

���i
	mf0 +

�i,j

2
����i�2

+ ���i�2

 − �� j ·
�

��� j
	mf0 +

�i,j

2
����i�2 + ���i�2



= mf0 −
�i,j

2
����i�2 + ���i�2
 = 0, �A6�

and, accordingly,

� ·
�

����i�
�mf0
 = � ·

�

����i�
	�i,j

2
����i�2 + ���i�2

 .

�A7�

Considering relations �A6� and �A7� and the fact that � ·r
=� · ����i−�� j� / ���i−�� j�
=1 /R, summation of the solv-
ability conditions for �i and � j �Eq. �70� in Ref. 49
 gives

vgb,n

L
�

0

+	 �� ��i

�r
�2

+ � �� j

�r
�2�dr

= −
1

R

�2�i,j

��i,j�2�
0

+	 � ��i

�r �2
+ � �� j

�r �2

� ��i

�r � − � �� j

�r � � ��i

�r
−

�� j

�r
�dr

−
��i,j

��i,j�

�

�t1
�

0

+	 �� ��i

�r
�2

+ � �� j

�r
�2�dr

−
�i,j

R
�

0

+	 �� ��i

�r
�2

+ � �� j

�r
�2�dr , �A8�

with t1 the coordinate tangential to the surface. Evaluation of
Eq. �A8� using relations �7�, �9�, and �12� gives after rear-
rangement
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vgb,n = −
Li,j

��i,j

g��i,j�
���i,jg��i,j� +

�2��i,jg��i,j�
��i,j�2 � 1

R
�A9�

for the normal velocity of a point on a grain boundary sur-
face. If �i,j and g2��i,j� have the same inclination-dependent
factor as the specific grain boundary energy �gb, Eq. �A9�
simplifies to

vgb,n = − Li,j��i,j +
�2�i,j

��i,j�2 � 1

R
. �A10�

If the inclination dependence of the specific grain boundary
energy is completely treated in the gradient contribution in
the free energy, �i,j

2 must have the same inclination depen-
dence as the specific grain boundary energy and relation
�A9� reduces to

vgb,n = − Li,j
��i,j���i,j +

�2��i,j

��i,j�2 � 1

R
. �A11�

The latter relation has a form that is very similar to that of
Eq. �72� in Ref. 49.

We remark that for nonuniform grain boundary properties,
the value of the phase field variables at the middle of the
interface is no longer constant along the grain boundary, as it
varies with �i,j��i,j�. Therefore, the gradients of the phase
fields ��i and �� j have a component along the tangential to
the surface, although the vector ����i−�� j� / ���i−�� j�� is
always perpendicular to the surface. The tangential compo-
nents are omitted in Eq. �A8� since their contributions vanish
after summation of the equations for �i and � j or are of two
orders higher in � than the other terms �see explanation at the
end of Appendix B�.

Following the procedure described in Refs. 48 and 61, the
force of a diffuse grain boundary acting on a plane that cuts
its surface can be calculated in the sharp interface limit. As-
sume, for instance, a grain boundary surface with normal r
as in Fig. 1�b� and a plane cutting the surface oriented per-
pendicularly to it with normal t1 and so that direction t2 is
common to the grain boundary surface and the plane. The
local force acting on the plane is given by

F = � · t1, �A12�

with � as a tensor with, for the current model, the elements

�pq = �p�i
� f

���q�i�
+ �q� j

� f

���q� j�
− �pqf , �A13�

where p ,q run over the spatial coordinates, or in tensor no-
tation

� = ��i �
� f

���i
+ �� j �

� f

��� j
− fI , �A14�

with I as the unit tensor. Assuming �gb�R1 and R2 infinite
and using Eq. �7�, we obtain to leading order

� f

����i�
=

��i,j

�
1

� ��i

�r �2
+ � �� j

�r �2

� ��i

�r −
�� j

�r �
t1 + �i,j

��i

�r
r , �A15�

with the angle 
1 measured in the curvilinear coordinate sys-
tem. By consequence, in a single point

� = �� ��i

�r
�2

+ � �� j

�r
�2��r � � ��i,j

�
1
t1 + �i,jr� − �i,jI� ,

�A16�

and

F = � · t1 = �� ��i

�r
�2

+ � �� j

�r
�2�� ��i,j

�
1
r − �i,jt1� .

�A17�

Integration of Eq. �A17� along the phase field profiles across
a diffuse grain boundary gives the total force acting on the
plane per unit length �with the length measured along direc-
tion t2� as

f = �
0

	

Fdr =
�

�
1
	�i,j�

0

	 �� ��i

�r �2

+ � �� j

�r �2�dr
r

− �i,j	�
0

	 �� ��i

�r �2

+ � �� j

�r �2�dr
t1

=
��gb

�
1
r − �gbt1, �A18�

where relations �7�, �9�, and �12� are used to evaluate the
integral.

APPENDIX B: VECTOR RELATIONS AND EXPANSIONS

Consider the angle

�i,j� = arctan��y�i − �y� j

�x�i − �x� j
� , �B1�

measured with reference to the axis of the x coordinate. It
can then be verified that �see also Ref. 49�

��i,j�

���i
= −

��i,j�

��� j
=

1

���i − �� j�2
�− ��y�i − �y� j�

�x�i − �x� j
� ,

�B2�

is a vector tangential to the surface. Furthermore,

− ���i − �� j� ·
��i,j�

����i�
= −

1

����i − �� j��2

�	��x�i − �x� j�y�i − �y� j �

· �− ��y�i − �y� j�
�x�i − �x� j

�
 = 0,

�B3�
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� · ����i − �� j�2
��i,j�

����i�
� = � · ����i − �� j�2

��i,j�

���� j�
� = 0,

�B4�

and

���i,j� � · �− ��y�i − �y� j�
�x�i − �x� j

� = ���i − �� j� � ·
��i − �� j

���i − �� j�
.

�B5�

With r the normal to the grain boundary surface and r�
directed along the gradient of �i, it can be derived that

�� 1

���i − �� j�
� = � ��i − �� j

���i − �� j�
���2�i − �2� j�

= ��2�i − �2� j�r �B6�

is directed along the normal to the surface and

����i�2 = �� ��i

�r
r��2

= 2� ��i

�r
r���� · � ��i

�r
r���

= 2���i���2�i� �B7�

=2� ��i

�r
r���2�i� + � ��i

�t1
t1���2�i� ,

�B8�

has a contribution along the tangential, which is of one order
higher in � than the radial term ���i /�t1=O�1�, ��i /�r
=O�1 /��
. Since the vector �−��y�i−�y� j� ��x�i−�x� j�

is directed along the tangential to the surface, the second
term in Eqs. �A3� and �A4� gives a contribution for curved
surfaces and �i,j inclination dependent, which is of the order
O�1� in �. Moreover, the contributions in ���i /�t1�2 and
��� j /�t1�2 in

����i�2 + ��� j�2
 = �� ��i

�r
�2

+ � ��i

�t1
�2

+ � �� j

�r
�2

+ � �� j

�t1
�2�
�B9�

=�� ��i

�r
�2

+ � �� j

�r
�2� + O�1� , �B10�

are of two orders higher in � than those in ���i /�r�2 and
��� j /�r�2.
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